
De novo yeast genome assemblies from MinION,
PacBio and MiSeq platforms
Supplementary Materials
Francesca Giordano1,*, Louise Aigrain1, Michael A. Quail1, Paul Coupland2, James K.
Bonfield1, Robert M. Davies1, German Tischler3, David K. Jackson1, Thomas M. Keane1,
Jing Li4, Jia-Xing Yue4, Gianni Liti4, Richard Durbin1, and Zemin Ning1

1The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
2Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
3Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstraße 108, 01037 Dresden, Germany
4Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
*Correspondence should be addressed to F.G. (email: francesca.giordano@sanger.ac.uk)

De novo Assembly and Scaffolding Pipelines
The de novo assembly pipelines we assessed and the parameters we used are listed in this section. Scripts to download the data
and run these pipelines are available from GitHub: https://github.com/fg6/YeastStrainsStudy.git.

• Miniasm. Miniasm is a fast assembler developed for long and error-prone reads. An assembly graph is generated
from overlapping reads found by Minimap, a MinHash-sketch-based aligner1. Small bubbles are collapsed and unitigs
are built from the graph, without any error correction step nor a consensus generation from the aligned reads. We ran
MiniMap version r122 and Miniasm version r104 using default settings and parameters.

• Racon. Racon aligns the long reads to a low accuracy draft assembly and improves the quality of the assembly by generat-
ing a consensus from the aligned reads. We tested Racon (github commit 28980bec3e98189853ed919764d5a8a9e6291264)
on a Miniasm assembly generated as in the previous point. The time and memory consumption reported for Racon
include the resources used to generate the initial Miniasm assembly. The raw reads (reads.fasta) were aligned to the
Miniasm assembly (contigs.fasta) using GraphMap2:

$ graphmap align -a anchor --rebuild-index -B 0 -r contigs.fasta \
-d reads.fasta -o output.sam --extcigar -t 8

and the consensus was generated with Racon in the following way:

$ racon -M 5 -X -4 -G -8 -E -6 --bq 10 -t 8 contigs.fasta \
output.sam consensus.fasta

We ran a second iteration of consensus generation by realigning the raw reads against the consensus from the first iteration
of Racon and by generating a new consensus in the same way as in the first iteration.

• Falcon. Falcon was originally developed to correct and assemble PacBio data, but it can also be used with ONT data.
Before assembling the long reads, it corrects them by generating a consensus from an all-versus-all alignment obtained
from a modified version of DALIGNER (https://github.com/cschin/DALIGNER). We ran Falcon release
v0.3.0 with the parameters:

avoid_text_file_busy=true
length_cutoff = 1000
length_cutoff_pr = 1000
pa_concurrent_jobs = 30
ovlp_concurrent_jobs = 30
pa_HPCdaligner_option = -v -dal4 -t16 -e.70 -l100 -s100
ovlp_HPCdaligner_option = -v -dal4 -t30 -h60 -e.92 -l100 -s100
pa_DBsplit_option = -x500 -s50

1

https://github.com/fg6/YeastStrainsStudy.git
https://github.com/cschin/DALIGNER

ovlp_DBsplit_option = -x500 -s50
falcon_sense_option= --output_multi --min_idt 0.50 --max_n_read 200 --n_core 8
overlap_filtering_setting=--max_diff 100 --max_cov 100 --min_cov 5 --bestn 20 --n_core 8

• PBcR. PBcR is a Celera based assembler3. Before assembly, PBcR has a read error correction step. The error
correction can be performed either with or without Illumina reads. When using Illumina reads, the short reads are
aligned by the Celera built-in aligner against the long reads that are corrected accordingly. Without Illumina reads,
long reads are aligned all-against-all and a consensus is generated (self-correction). In this last case, we chose to use
the MHAP aligner4, which is faster and performs better than the other possible choice, BLASR (https://github.
com/PacificBiosciences/blasr). We showed both options for correction, referred to as PBcR-MiSeQ and
PBcR-Self, respectively. We used PBcR from the Celera Assembler package version 8.3rc2. The spec file pbcr.spec
included the following parameters for all datasets and for the MiSeQ and Self cases:

merSize=16
frgCorrThreads = 10
useGrid=0
scriptOnGrid=0
ovlMemory=50
ovlStoreMemory=100000
threads=20
ovlConcurrency=1
cnsConcurrency=8
merylThreads=32
merylMemory=32000
frgCorrBatchSize = 100000
ovlCorrBatchSize = 100000

For the Self case the spec file included the additional parameters:

mhap=-k 16 --num-hashes 512 --num-min-matches 3 --threshold 0.04 --weighted
ovlRefBlockSize=20000

and PBcR was run with the command:

$ PBcR -length 500 -partitions 200 -l S288c -s pbcr.spec -fastq reads.fastq \
genomeSize=12160000

For the MiSeq case, before running PBcR we generated a Celera Assembler FRG file from the Illumina reads using
fastqToCA (from the Celera Assembler package version 8.3rc2):

$ fastqToCA -libraryname illumina -technology illumina -type sanger -innie \
-insertsize 200 60 -mates reads1.fastq,reads2.fastq > illumina.frg

then ran PBcR in this way:

$ PBcR -length 500 -partitions 200 -l S288c -s pbcr.spec -fastq reads.fastq \
genomeSize=12160000 illumina.frg

For datasets at low read depth (≤ 31X) we also requested the following parameters (from http://wgs-assembler.
sourceforge.net/wiki/index.php/PBcR#Low_Coverage_Assembly):

QV=52
asmOvlErrorRate = 0.1
asmUtgErrorRate = 0.06
asmCgwErrorRate = 0.1
asmCnsErrorRate = 0.1
asmOBT=1
batOptions=-RS -CS
utgGraphErrorRate = 0.05
utgMergeErrorRate = 0.05
asmObtErrorRate=0.08
asmObtErrorLimit=4.5

2/9

https://github.com/PacificBiosciences/blasr
https://github.com/PacificBiosciences/blasr
http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR#Low_Coverage_Assembly
http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR#Low_Coverage_Assembly

• Canu. Like PBcR, Canu is a fork of the Celera assembler. Canu can run without specifying any parameter as it
automatically detects the available resources and scale the requirements accordingly. Before assembling the reads, Canu
performs a base-error correction step aligning all long reads against each other with MHAP. We used version 1.3 and ran
it as:

$ canu -p yeast -d yeast genomeSize=12.16m useGrid=0 -nanopore-raw reads.fastq

for ONT reads, and as:

$ canu -p yeast -d yeast genomeSize=12.16m useGrid=0 -pacbio-raw reads.fastq

for PacBio reads. When running on the low coverage ONT and PacBio datasets (≤ 31X) we also required:

corMhapSensitivity=high corMinCoverage=2 errorRate=0.025 minOverlapLength=499 \
corMaxEvidenceErate=0.3

• SMARTdenovo. SMARTdenovo aligns the raw ONT or PacBio reads all-vs-all without any error-correction stage
using the built-in wtzmo aligner, based on homomer-collapsed seeds. Once the long reads are aligned all against all, a
consensus algorithm generates the final assembly. We generated the final consensus running SMARTdenovo 1.0 with
default parameters.

• ABruijn. ABruijn is the only long-read assembler considered here that is not based on the OLC paradigm, but on
a generalized and more flexible De-Bruijn graph approach called A-Bruijn, which can accommodate and assemble
error-prone reads. From the generated A-Bruijn graph, an error-prone draft assembly is built, the long reads are aligned
against it by BLASR and finally partial order alignment5 is used to correct the draft assembly. We ran ABruijn 0.4b with
default parameters.

We also tested the assembly-polishing tool Nanopolish on a ONT-based Canu assembly. Nanopolish uses the nanopore
event current information and run an iterative HMM statistic algorithm to improve the assembly accuracy. We ran Nanopolish
0.5.0 on a Canu assembly, canu.fasta, following the author’s recipe:

$ bwa mem -x ont2d -t 10 canu.fasta reads.fasta | \
samtools view -Sb - | samtools sort -f - canu.sorted.bam

$ samtools index canu.sorted.bam
$ cp nanopolish/etc/r9-models/* .
$ nanopolish eventalign -t 10 --sam -r reads.fasta -b canu.sorted.bam -g canu.fasta \

--models nanopolish_models.fofn | samtools view -Sb - | \
samtools sort -f - canu.eventalign.sorted.bam

$ samtools index canu.eventalign.sorted.bam
$ python nanopolish/scripts/nanopolish_makerange.py canu.fasta | parallel --results \

nanopolish.results -P 5 nanopolish variants --consensus polished.{1}.fa -w {1} \
-r reads.fasta -b canu.sorted.bam -g canu.fasta -e canu.eventalign.sorted.bam \
-t 10 --min-candidate-frequency 0.1 --models nanopolish_models.fofn

$ python nanopolish/scripts/nanopolish_merge.py polished.*.fa > polished_genome.fa

We used three scaffolding pipelines to build scaffolds for an Illumina-only assembly generated by SPAdes v3.7.1, which
was run with standard settings plus the --careful option. The scaffolding pipelines and the parameters we used to assess
them are:

• HybridSPAdes. HybridSPAdes is part of the SPAdes genome assembler pipeline. It uses both NGS and long reads
to generate an assembly. It first uses the standard SPAdes algorithm to build a De Bruijn graph with the short reads,
simplifies it to an assembly graph and then aligns against it the long reads for gap closure. We ran HybridSPAdes using
SPAdes v3.7.1 with default parameters plus the --careful option.

• npScarf. The npScarf pipeline is a scaffolding tool provided within the Japsa package (https://github.com/
mdcao/japsa). It takes as input an initial NGS-based draft assembly from SPAdes and a bam alignment file between
the long reads and the draft assembly, obtained with BWA6. The bam alignments are then used to scaffold contigs and
resolve repeat regions. npScarf can make use of the MinION real-time sequencing feature as it can be fed long reads
from a stream. We used npScarf from the Japsa package version 1.6-08a with default parameters in its non-real-time
fashion. To generate the bam file, we used bwa mem (version 0.7.12) with the following parameters: -x ont2d -a -Y

for ONT data, and -x pacbio -a -Y for PacBio data.

3/9

https://github.com/mdcao/japsa
https://github.com/mdcao/japsa

Table S1. Statistic information for the 2D-All and 2D-Pass ONT datasets for the S288C strain.

Oxford Nanopore Datasets

Strain Dataset Bases (Mb) Reads Average (b) Longest (b) N50 (b) Identity

S288c 2D, All: 61X 738 90,791 8,123 245,845 11,075 93.3%
2D, Pass: 31X 383 42,325 9,040 56,477 11,693 93.3%

• SMIS. SMIS (https://github.com/fg6/smis.git), or the Single Molecule Integrated Scaffolding pipeline,
is in development at the Wellcome Trust Sanger Institute and aims to be a comprehensive pipeline for long reads
exploitation, from scaffolding of fragmented NGS-based assemblies to structure variation detection. We assessed the
SMIS capabilities as a scaffolding tool. We presented the SMIS scaffolding results when using as input the SPAdes
assembly generated as described above and the long reads. From each long read, SMIS creates fake-mates sequences
with fixed length and fixed insert length (2000 bp and 200 bp, respectively). Such fake-mates are then aligned against the
SPAdes assembly via BWA. If enough fake-mates bridge multiple contigs, the latter are scaffolded together and the gap
size is estimated from the initial fixed insert and filled with ’Ns’.

PacBio datasets
The PacBio datasets are available from the EBI database with accession code PRJEB7245. For this study we collected data
from the following accession numbers:

• S288C strain: ERR1655125, ERR1655118, and ERR1655119

• SK1 strain : ERR1080537, ERR1080529, ERR1140978 ERR1080522, ERR1080536, and ERR1124245

• N44 strain : ERR1080523, ERR1080530, and ERR1080535

• CBS432 strain : ERR1080527, ERR1080540, and ERR1080541

The appropriate data can be downloaded and merged in fastq files using the scripts available from GitHub: https://github.
com/fg6/YeastStrainsStudy.git.

Extraction of the 31X ONT-Emu PacBio subset
We provide a python code to select a subset of reads with desired depth from an initial fasta/fastq file: https://github.
com/fg6/random_subreads. The subset can be extracted completely randomly, or following a Gaussian distribution
around a desired length position.

The randomly selected subset will have a read length distribution similar to the initial dataset. This is because each read has
the same probability to be picked, and there are more reads with length around the initial distribution peak. To modify the
distribution shape, for instance to have a peak in a different position, we can modify the probability for a read to be selected
depending on its length by assigning a weight: reads with length around the initial distribution peak will have a smaller weight
(=smaller probability to be picked), while reads at lengths around the new, desired peak will have higher weight. Then we can
select the reads (pseudo-)randomly taking into account the assigned weights. The weight to assign to each read can be tricky to
determine and depends on how different the initial and the desired shapes are, but also on how much we want to subset the
sample: the larger the final subset, the more difficult it will be to change the original shape.

For the PacBio ONT-Emu datasets, we generated PacBio subsamples with shapes similar to that of the ONT 2D-Pass
datasets. For this particular case, we created a new branch of the mentioned repository called ”YeastStrainsStudy” that
incorporates the heuristically optimized weights to be assigned to each read according to its length. Because of its partially
random nature, the subsamples generated contain each time a different group of reads. The exact group of reads used in this
study for the 31X ONT-Emu subsample can be obtained using the scripts available from GitHub: https://github.com/
fg6/YeastStrainsStudy.git.

Oxford Nanopore: S288c 2D-Pass versus 2D-All data
Here, we compare the de novo assemblies from ONT data when using only the best 2D reads, i.e. the 2D-Pass reads, to when
we use all the 2D reads, i.e. including the 2D reads from both the ’Pass’ and the ’Fail’ directories (2D-All). While the ’Fail’
reads’ accuracies are lower than those of the Pass reads, they might comprise longer reads which could improve the contiguity

4/9

https://github.com/fg6/smis.git
https://github.com/fg6/YeastStrainsStudy.git
https://github.com/fg6/YeastStrainsStudy.git
https://github.com/fg6/random_subreads
https://github.com/fg6/random_subreads
https://github.com/fg6/YeastStrainsStudy.git
https://github.com/fg6/YeastStrainsStudy.git

Table S2. Statistic information for the assemblies from the 2D-All and 2D-Pass ONT datasets for the S288C strain.

Oxford Nanopore S288C Datasets

Dataset Assembler
Bases
(Mb) Contigs N50

(kb)
Reference
Coverage

SNPs,Indels
(# per kb) Identity MisAss

Na50
(kb)

Genes
(6,615)

CPU
Time
(h)

Memory
(GB)

2D, All
61X

PBcR-MiSeQ 12.0 83 324 99.15% 0.2, 0.2 99.94% 14 315 6,520 91 16
Miniasm 11.8 24 760 87.58% 36, 66 88.34% 37 145 2,428 0.1 9
Racon 12.0 24 777 99.37% 0.4, 12 98.75% 21 720 6,546 14 9
Falcon 11.7 42 711 98.52% 0.5, 26 97.30% 19 705 6,471 57 71
SMARTdenovo 12.0 23 772 99.21% 0.3, 15 98.39% 30 657 6,539 3 5
ABruijn 11.9 24 691 99.18% 0.2, 18 98.15% 30 531 6,531 75 10
PBcR-Self 15.1 185 408 98.84% 0.2, 24 97.45% 106 290 6,462 310 28
Canu 11.9 26 650 99.00% 0.1, 20 97.94% 34 524 6,462 184 69

2D, Pass
31X

PBcR-MiSeQ 11.9 76 305 99.08% 0.1, 0.2 99.94% 18 273 6,514 147 17
Miniasm 11.8 27 739 94.85% 34, 67 89.42% 26 362 3,353 0.1 5
Racon 12.0 27 752 98.80% 0.4, 11 98.76% 24 534 6,533 8 5
Falcon 11.9 43 717 99.09% 0.5, 21 97.79% 27 546 6,526 19 71
SMARTdenovo 12.1 28 625 99.54% 0.3, 14 98.50% 25 531 6,556 2 5
ABruijn 12.4 26 769 98.89% 0.1, 15 98.49% 31 536 6,533 44 8
PBcR-Self 12.9 64 616 99.21% 0.2, 17 98.24% 92 525 6,552 695 23
Canu 12.1 29 698 99.62% 0.1, 17 98.30% 34 530 6,566 80 14

of the assemblies. The reads statistic information for the 2D-All and 2D-Pass are summarized in the Supplementary Table S1,
while the related assemblies’ information are shown in the Supplementary Table S2.

The assemblies from the 2D-All or 2D-Pass samples do not differ significantly, but, except for a couple of cases, the
assemblies have typically longer reference coverage and slightly higher accuracy when running on the higher quality 2D-Pass
dataset; also, most pipelines are able to reconstruct more genes in the 2D-Pass case. The assemblies contiguity though appear
higher on the 2D-All sample, as shown by the assembly Na50s. From the resource point of view, the inclusion of the ’Fail’ data
increased the depth from 31X to 61X, and this resulted in a 2-3 fold longer running time in almost all assemblies except for
Miniasm and PBcR. For the latter the running time was about 2 times longer when running on 2D-Pass data, probably because
of the additional higher sensitivity parameters used for the lower depth case (see Supplementary Note). When running on the
smaller dataset (2D-Pass) the maximum memory requirement slightly decreased or remained the same for all the pipelines
except for Miniasm and Canu for which the memory needed was 2 and 4 times lower than on the 2D-All case, respectively.

Even though the Na50s are longer for the 2D-All data, we decided to present our assessment studies using the 2D-Pass
based assemblies because of their higher accuracies.

Depth study II: PacBio samples at 120X, 80X, 61X, 31X, 20X and 10X
Statistic information for the assemblies based on the whole S288c PacBio dataset and its randomly selected subsets are shown in
the Supplementary Table S5. From 10X to 31X the performances are similar to the one observed for the ONT-Emu samples in
Table 4, with PBcR-MiSeQ providing the longest, more accurate assembly at 10X and the other Celera-based pipelines catching
up quickly already at 20X although with a lower accuracy. At 31X Canu and PBcR-Self generated the highest accuracies
between the non-hybrid pipelines, around 99.9%, second only to the 99.97% accuracy of the hybrid pipeline PBcR-MiSeQ.
PBcR-Self produced the most contiguous assembly, with an Na50 of 740 Mb, while SMARTdenovo generated the assembly
with the longest reference coverage and the highest number of genes reconstructed, even though with a slightly lower accuracy
than Falcon or ABruijn. The accuracy kept slightly improving for all pipelines until 61X depth to remain basically unchanged
afterwards, while the Na50 keep increasing until 80X, but did not change or got slightly worse when approaching the depth
of 120X. In conclusion, Canu and PBcR-Self were the best performing pipelines for the datasets we analyzed in this study,
providing assemblies with high reference coverage, high accuracy and high Na50s already at 31X depth. Increasing the
depth beyond 31X improved their accuracy from 99.9% up to 99.97−99.98%, a level commonly reached by Illumina-only
assemblies. Unlike the Illumina-only assemblies, they achieved quite long Na50s: 549 kb for Canu and 740 kb for PBcR-Self.

5/9

Also Falcon and SMARTdenovo reached long Na50s (at 120X depth 740 kb and 667 kb, respectively), but their accuracies
remained at a lower 99.9%; a similar value for the accuracy was provided by ABruijn, which produced slightly lower Na50
(546 kb at 120X) but was able to reconstruct more genes. The highest number of genes (6,608 out of 6,615) was reconstructed
by Canu when run on the 80X and the 120X samples.

Other Strains Assemblies from PacBio Data
For the N44, CBS432, and SK1 strains no reference genome exists. We de novo assembled the 148X depth N44, the 135X
depth CBS432, and the 248X depth SK1 PacBio data with the same assembler pipelines used for the S288C strain to obtain
very contiguous assemblies whose statistic information are summarized in the Supplementary Table S4. While we cannot
directly estimate the assembly accuracies, contiguity and possible misassemblies, we can expect these assemblies to have
similar accuracy obtained for the 120X depth S288c PacBio data, up to 99.98% for the Celera-based assemblers. Table S4 also
shows that Canu is the pipeline that reconstruct for each strain the highest number of genes. It also suggests that the SK1 strain
has an higher number of genes in common with the reference strain than CBS432 and N44, as expected. A comprehensive
structure-variation analysis of these strains using the same PacBio datasets used here can be found in7.

References
1. Broder, A. Z. On the resemblance and containment of documents. In In Compression and Complexity of Sequences

(SEQUENCES’97), 21–29 (IEEE Computer Society, 1997).

2. Sović, I. et al. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nature Communications 7, 11307
(2016).

3. Miller, J. R. et al. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24, 2818–2824 (2000).

4. Berlin, K. et al. Assembling large genomes with single-molecule sequencing and locality sensitive hashing. Nature
Biotechnology 33, 623–630 (2015).

5. Lee, G. C. S. M., C. Multiple sequence alignment using partial order graphs. Bioinformatics 18, 452–464.

6. Li, H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv: 1303.3997v1 [q–bio.GN]
(2013).

7. Yue, J.-X. et al. Contrasting genome dynamics between domesticated and wild yeasts. bioRxiv; 10.1101/076562 (2016).

6/9

Table S3. Statistic information for the de novo assemblies generating using, from top to bottom: the whole S288c PacBio
dataset, subsets at 80X, 61X, 31X, 20X and 10X depth of randomly selected reads from the immediately larger subset.

Pacific Biosciences S288C Datasets

Dataset Assembler
Bases
(Mb) Contigs N50

(kb)
Reference
Coverage

SNPs,Indels
(# per kb) Identity MisAss

Na50
(kb)

Genes
(6,615)

CPU
Time
(h)

Memory
(GB)

Whole:
120X

PBcR-MiSeQ 11.8 70 379 98.78% 0.1, 0.1 99.96% 15 315 6,532 172 18
Miniasm 12.5 29 669 94.72% 20, 88 89.23% 64 109 3,075 0.4 15
Racon 12.0 29 642 98.59% 0.2, 2 99.77% 27 536 6,528 65 15
Falcon 11.9 24 805 98.45% 0.2, 1 99.90% 18 740 6,515 82 75
SMARTdenovo 12.1 18 778 99.16% 0.1, 1 99.93% 30 667 6,581 5 5
ABruijn 12.3 20 776 99.88% 0.04, 1 99.90% 45 546 6,604 42 19
PBcR-Self 12.2 17 810 99.27% 0.1, 0.2 99.97% 34 740 6,588 29 32
Canu 12.3 22 778 99.95% 0.1, 0.1 99.98% 34 549 6,606 35 15

Random:
80X

PBcR-MiSeQ 11.8 62 421 98.92% 0.1, 0.1 99.96% 12 314 6,538 172 19
Miniasm 12.5 26 810 94.96% 19, 87 89.27% 78 88 3,135 0.3 13
Racon 12.0 26 777 98.99% 0.2, 2 99.75% 25 634 6,539 49 13
Falcon 11.9 25 809 98.75% 0.2, 1 99.91% 15 726 6,541 124 75
SMARTdenovo 12.1 19 779 99.11% 0.1, 1 99.90% 27 667 6,581 4 5
ABruijn 12.2 22 737 99.91% 0.1, 1 99.90% 40 548 6,605 29 12
PBcR-Self 12.5 36 777 99.35% 0.1, 0.2 99.96% 54 637 6,588 21 32
Canu 12.3 20 814 99.97% 0.1, 0.1 99.98% 39 740 6,608 29 14

Random:
61X

PBcR-MiSeQ 11.9 72 425 99.46% 0.1, 0.1 99.97% 12 315 6,558 98 19
Miniasm 12.6 31 586 95.38% 19, 87 89.38% 69 111 3,213 0.2 9
Racon 12.1 31 567 99.34% 0.1, 2 99.73% 27 540 6,564 38 9
Falcon 12.0 25 766 99.03% 0.2, 1 99.89% 23 661 6,570 61 73
SMARTdenovo 12.3 23 744 98.54% 0.1, 1 99.85% 27 547 6,602 3 4
ABruijn 12.1 20 818 99.60% 0.1, 1 99.90% 26 740 6,592 19 10
PBcR-Self 12.3 29 743 99.32% 0.1, 0.3 99.96% 32 568 6,588 16 30
Canu 12.3 22 778 99.93% 0.1, 0.2 99.97% 29 565 6,601 23 14

Random:
31X

PBcR-MiSeQ 11.7 76 272 98.05% 0.1, 0.1 99.97% 12 266 6,444 129 17
Miniasm 12.5 46 455 95.59% 19, 87 89.43% 75 76 3,300 0.01 5
Racon 12.0 46 443 98.92% 0.2, 4 99.51% 26 423 6,530 18 5
Falcon 12.0 45 501 98.13% 0.3, 2 99.78% 32 447 6,487 33 64
SMARTdenovo 12.3 30 556 99.93% 0.2, 4 99.53% 25 510 6,588 2 4
ABruijn 11.9 58 273 97.81% 0.1, 1 99.81% 29 245 6,476 22 7
PBcR-Self 12.4 38 813 99.23% 0.2, 1 99.91% 34 740 6,580 69 26
Canu 12.3 37 530 99.70% 0.1, 0.5 99.92% 30 496 6,580 21 10

Random:
20X

PBcR-MiSeQ 11.7 72 263 97.99% 0.1, 0.1 99.97% 14 263 6,481 85 13
Miniasm 11.2 167 89 87.48% 16, 77 89.61% 42 36 3,076 0.04 3
Racon 10.8 167 85 90.08% 0.5, 7 99.14% 21 82 5,824 12 2
Falcon 9.8 210 80 82.32% 0.3, 2 99.66% 31 76 5,280 11 41
SMARTdenovo 12.1 61 307 98.63% 1, 11 98.77% 23 265 6,402 1 3
ABruijn 9.6 102 106 80.83% 0.2, 3 99.53% 20 102 5,273 20 9
PBcR-Self 12.5 61 570 99.0% 0.2, 2 99.75% 45 435 6,557 35 21
Canu 12.2 42 438 99.60% 0.2, 2 99.80% 25 321 6,570 10 7

Random:
10X

PBcR-MiSeQ 10.7 189 91 91.86% 0.1, 0.1 99.96% 11 87 5,926 46 7
Miniasm 2.1 87 26 19.34% 3, 14 89.65% 4 15 580 0.02 0.1
Racon 2 87 25 20.27% 0.4, 2 98.19% 8 23 1,107 6 1
Falcon 0.7 96 11 10.34% 0.1, 0.3 99.24% 8 10 484 2 23
SMARTdenovo 6.8 174 42 57.87% 3, 20 95.77% 10 37 3,284 0.4 1
ABruijn 1.4 22 67 15.76% 0.2, 2 98.34% 6 67 877 5 7
PBcR-Self 8.5 264 41 70.17% 0.6, 7 98.88% 34 40 4,389 12 19
Canu 8.0 207 44.6 69.11% 0.4, 5 99.13% 9 44 4,348 4 7

7/9

Table S4. Statistic information for the PacBio de novo assemblies from the PBcR-MiSeQ, Miniasm, Racon, Falcon,
SMARTdenovo, ABruijn, PBcR-Self and Canu pipelines for the N44 (top panel), CBS432 (middle panel), and SK1 (bottom
panel) strains.

Pacific Biosciences Datasets

Dataset Assembler
Bases
(Mb) Contigs N50

(kb)
Genes
(6,615)

CPU
Time
(h)

Memory
(GB)

N44

PBcR-MiSeQ 12.0 57 554 5,531 138 18
Miniasm 12.1 17 830 247 1 16
Racon 11.7 17 801 5,472 101 17
Falcon 11.7 22 789 5,507 92 73
SMARTdenovo 11.9 18 801 5,540 4 4
ABruijn 12.0 19 797 5,550 117 20
PBcR-Self 11.9 22 800 5,544 49 30
Canu 11.9 18 800 5,552 46 14

CBS432

PBcR-MiSeQ 12.0 68 395 5,464 218 19
Miniasm 12.4 20 853 301 1 16
Racon 11.9 20 826 5,549 72 16
Falcon 11.8 24 809 5,573 90 72
SMARTdenovo 12.0 20 827 5,598 4 4
ABruijn 12.1 19 779 5,608 59 18
PBcR-Self 12.2 33 816 5,601 39 31
Canu 12.2 25 742 5,609 41 14

SK1

PBcR-MiSeQ 11.8 59 413 6,369 110 17
Miniasm 12.3 22 840 3,587 2 19
Racon 12.0 22 814 6,467 137 29
Falcon 10.4 104 272 5,697 218 80
SMARTdenovo 12.1 19 819 6,490 10 5
ABruijn 12.1 18 822 6,502 241 37
PBcR-Self 12.4 33 829 6,490 68 30
Canu 12.3 24 830 6,504 98 14

8/9

Table S5. Chromosome Reconstruction. Chromosome reconstruction percentage and number of contigs for the S288C ONT
2D-Pass 31X dataset as estimated using Quast output. The mitochondrial genome is labeled as ’mt’.

Oxford Nanopore 2D-Pass (31X) Dataset

Chr
PBcR-
MiSeq

%, Contigs

Miniasm
%, Contigs

Racon
%, Contigs

Falcon
%, Contigs

SMARTdenovo
%, Contigs

ABruijn
%, Contigs

PBcR-Self
%, Contigs

Canu
%, Contigs

I 98.5%, 5 72.5%, 1 86.2%, 1 88.9%, 1 91.0%, 1 88.9%, 1 97.1%, 2 92.7%, 1
II 98.1%, 4 88.3%, 1 100.0%, 1 98.8%, 1 99.1%, 1 96.7%, 2 99.7%, 2 100.0%, 1
III 97.8%, 5 81.2%, 2 90.5%, 2 95.3%, 3 95.7%, 2 90.6%, 2 98.7%, 2 98.0%, 2
IV 96.9%, 9 86.0%, 5 99.6%, 5 97.6%, 3 98.5%, 4 99.4%, 4 100.0%, 7 99.9%, 3
V 97.8%, 3 78.9%, 2 99.5%, 2 97.3%, 2 100.0%, 2 98.7%, 2 100.0%, 5 100.0%, 2
VI 94.4%, 2 86.6%, 1 100.0%, 1 89.2%, 2 100.0%, 1 98.1%, 1 99.8%, 1 100.0%, 1
VII 98.1%, 8 86.8%, 2 100.0%, 4 98.1%, 3 100.0%, 2 98.3%, 3 100.0%, 4 100.0%, 5
VIII 96.2%, 3 82.4%, 4 96.6%, 2 98.6%, 3 95.8%, 3 98.6%, 1 99.9%, 3 97.5%, 2
IX 98.9%, 2 91.2%, 1 99.6%, 2 94.2%, 1 97.0%, 2 95.5%, 1 99.8%, 3 97.2%, 1
X 97.3%, 5 83.3%, 2 97.3%, 3 98.1%, 2 97.6%, 4 98.8%, 2 97.9%, 5 98.8%, 4
XI 100.0%, 1 87.6%, 1 99.4%, 1 97.6%, 1 100.0%, 1 98.9%, 1 99.9%, 1 100.0%, 1
XII 95.3%, 10 84.0%, 6 95.9%, 4 98.3%, 11 99.5%, 5 97.8%, 8 99.0%, 40 98.9%, 6
XIII 98.3%, 6 92.4%, 5 100.0%, 4 98.3%, 3 99.8%, 2 99.6%, 2 99.9%, 4 100.0%, 2
XIV 98.6%, 7 89.1%, 1 100.0%, 1 97.7%, 5 99.1%, 1 99.1%, 1 99.9%, 4 99.8%, 1
XV 88.3%, 6 87.4%, 2 100.0%, 1 97.0%, 1 99.9%, 2 99.3%, 2 100.0%, 4 100.0%, 2
XVI 97.2%, 9 87.7%, 3 99.7%, 3 98.8%, 6 99.9%, 2 99.4%, 2 98.7%, 3 99.9%, 2
mt 96.3%, 2 0.0%, 0 0.0%, 0 66.7%, 4 0.0%, 0 23.7%, 1 0.0%, 0 63.7%, 2

Table S6. Chromosome Reconstruction. Chromosome reconstruction percentage and number of contigs for the S288C PacBio
ONT-Emu 31X subset as estimated using Quast output. The mitochondrial genome is labeled as ’mt’.

PacBio ONT-Emu 31X Dataset

Chr
PBcR-
MiSeq

%, Contigs

Miniasm
%, Contigs

Racon
%, Contigs

Falcon
%, Contigs

SMARTdenovo
%, Contigs

ABruijn
%, Contigs

PBcR-Self
%, Contigs

Canu
%, Contigs

I 96.6%, 3 58.0%, 1 89.7%, 1 88.2%, 3 89.3%, 1 91.2%, 1 89.7%, 2 95.4%, 2
II 98.5%, 4 69.4%, 2 100.0%, 2 94.6%, 4 100.0%, 1 99.5%, 1 99.7%, 1 100.0%, 1
III 96.8%, 4 72.4%, 2 91.0%, 2 98.4%, 1 99.0%, 2 96.3%, 2 98.9%, 2 99.0%, 1
IV 97.1%, 10 74.1%, 7 99.2%, 7 99.0%, 7 100.0%, 3 99.8%, 7 100.0%, 4 99.1%, 5
V 97.6%, 4 68.4%, 2 96.3%, 1 96.3%, 2 100.0%, 1 100.0%, 1 99.7%, 1 100.0%, 1
VI 99.2%, 2 70.1%, 1 100.0%, 1 96.0%, 1 100.0%, 1 99.3%, 1 100.0%, 2 100.0%, 1
VII 97.9%, 9 67.0%, 3 98.3%, 2 98.9%, 2 100.0%, 2 99.9%, 2 100.0%, 2 100.0%, 2
VIII 96.7%, 2 63.9%, 2 97.9%, 2 95.9%, 3 98.8%, 3 95.8%, 3 100.0%, 3 100.0%, 1
IX 98.8%, 1 54.4%, 1 97.0%, 1 97.2%, 1 95.2%, 1 99.0%, 1 99.4%, 1 97.6%, 1
X 96.0%, 4 80.1%, 2 98.7%, 3 98.4%, 3 98.7%, 2 96.9%, 3 99.9%, 2 98.1%, 2
XI 100.0%, 1 66.0%, 1 99.7%, 1 96.9%, 1 100.0%, 1 99.9%, 1 100.0%, 1 100.0%, 1
XII 94.3%, 10 60.3%, 3 95.7%, 4 94.6%, 4 98.8%, 3 98.6%, 6 99.1%, 19 99.1%, 7
XIII 98.3%, 8 63.1%, 4 98.4%, 5 96.8%, 4 99.5%, 2 99.4%, 3 100.0%, 3 100.0%, 3
XIV 98.1%, 8 65.4%, 2 96.4%, 2 98.5%, 4 99.2%, 1 99.0%, 1 99.1%, 3 99.1%, 1
XV 98.7%, 5 70.2%, 2 98.0%, 3 97.7%, 4 99.6%, 2 98.7%, 3 99.9%, 4 100.0%, 3
XVI 96.6%, 8 59.9%, 3 97.4%, 3 98.6%, 3 100.0%, 1 99.8%, 3 98.7%, 1 99.5%, 3
mt 0.0%, 0 77.0%, 1 100.0%, 1 42.8%, 3 100.0%, 1 42.0%, 1 31.0%, 1 100.0%, 1

9/9

	References

